
Securing CVS on OpenBSD

Tillman J. Hodgson
Regina, Saskatchewan, Canada

http://www.hodgsonhouse.com/tillman/opensource.html

Revision Date: May 10, 2001

Contents

1 Introduction 1
1.1 Foreword 1
1.2 Disclaimer 1
1.3 Copyright 1
1.4 Acknowledgements 2
1.5 What is CVS? 2

2 Methodology 2
2.1 The Importance of Secure Passwords 2
2.2 The Importance of Secure Users 3
2.3 SSH Tunnels 3
2.4 Chroot Jails 3

3 Chrooting CVS 3
3.1 CVS User Setup 3
3.2 Populating the Jail 3
3.3 The run-cvs Wrapper 3
3.4 CVS Tools 4
3.5 CVS Administrative Files 4
3.6 Notifications 4
3.7 Sending Mail out of the Jail 4

4 SCVS: SSH Tunnel 4
4.1 Where to get SCVS 4
4.2 How to modify SCVS 4
4.3 Disabling SCP 4

5 Users Manual: Basic Operations 4

A Resources 4

B scvs listing 4

C Change Log 6

D GNU Free Documentation License 6

1 Introduction

1.1 Foreword

This document is meant as a basic introduction to secur-
ing an Internet-accessible CVS repository on an OpenBSD
server. It was prepared by Tillman Hodgson after his expe-
rience putting together the public CVS server for LOSURS
(http://www.losurs.org). OpenBSD 2.8 with the -
PATCHES CVS branch applied was used while developing
this document, though these techniques should be reason-
ably portable to most∗NIX systems.

1.2 Disclaimer

The author of this document isnot responsiblefor any dam-
ages incurred due to actions taken based on this document.
CVS has traditionally been a very insecure service, espe-
cially when exposed to the Internet. If you do not feel
comfortable taking responsibility for your own actions, you
should stop reading this document and hire a qualified secu-
rity professional to handle your CVS security for you.

1.3 Copyright

All contents are copyright © 2001 by Tillman Hodgson. Ex-
plicit permission to use this document has been granted to
LOSURS. Permission to use this documentation for Inter-
net web publications that are freely available to the general
public is granted under the following terms:

• An attribution consisting of a copyright notice for
Tillman Hodgson and the URL where the current
official version of this document can be found
(http://www.hodgsonhouse.com/tillman/
opensource/) needs to be included; and

• Content changes (as opposed to grammatical or spelling
changes, though those would be polite to send as well)
mustbe emailed totillman@hodgsonhouse.com
in a plain text format (preferably as a diff to the original
LATEX source) with a note that permission to incorporate
those changes into future versions of this document in-
cluded.

Securing CVS on OpenBSD
May 10, 2001

Tillman Hodgson
Page 2 of 7

Please contact Tillman Hodgson if you wish to use this
document under other terms or circumstances.

1.4 Acknowledgements

There’s a few folks that the author would like to acknowl-
edge for their aid in putting together this document:

• Anton Berezin for writing the FreeBSD-basedCh-
rooted tunnelled read-write CVS server HOWTO[1],
which is based on other works which also deserve a mo-
ment of appreciation.

• Heikki Korpela (from the misc@openbsd.org
mailing list) for his many emails of assistance while
I was tracking down the email notifiations problems.
Cheers :-)

• Scott Wunsch (http://www.wunsch.org) and
Gord Matzigkeit (http://www.fig.org), LO-
SURS founder and member-extraordinaire respectively,
for helping me set up the original presentation (and not
heckling me too much) and for letting me bounce ideas
off of you at early hours of the morning.

1.5 What is CVS?

The Cederqvist[2], the official manual for CVS, has this to
say about CVS and its uses:

”CVS is a version control system. Using it, you
can record the history of your source files.

For example, bugs sometimes creep in when soft-
ware is modified, and you might not detect the bug
until a long time after you make the modification.
With CVS, you can easily retrieve old versions to
see exactly which change caused the bug. This can
sometimes be a big help.

You could of course save every version of every
file you have ever created. This would however
waste an enormous amount of disk space. CVS
stores all the versions of a file in a single file in a
clever way that only stores the differences between
versions.

CVS also helps you if you are part of a group of
people working on the same project. It is all too
easy to overwrite each others’ changes unless you
are extremely careful. Some editors, like GNU
Emacs, try to make sure that the same file is never
modified by two people at the same time. Unfor-
tunately, if someone is using another editor, that
safeguard will not work. CVS solves this problem
by insulating the different developers from each
other. Every developer works in his own directory,
and CVS merges the work when each developer is
done.”

CVS is not:

• a build system

• a substitute for management

• a substitute fpr developer communications

• a change control system

• an automated testing program

• a process management system

CVS was also originally designed to provide version con-
trol for developers working off of the the same development
server. The grafting on off network access has resulted in
a reputation of bad security, and was the motivation for this
document.

2 Methodology

When trying to secure a service for public access, a little
bit of planning for your defensive strategy goes a long way
towards building a more solid system. What you want to
do is identify all the possible attack vectors, and then design
your security to block them.

Naturally, if your methodology misses an attack vector,
you are vulnerable.

Layered defenses help to alleviate this. By assuming that
any one defense method is somehow still vulnerable and
designing your security to offer redundent defense mecha-
nisms you can often survive an exploit relatively unscathed.
The methodology that was followed in this document works
on a layered system of a strong secure password stance,
encrypted tunnels to the CVS repository via SSH, and a
”jailed” CVS environment to contain any intrusions. The
appropriate use of the standard Unix permissions and host
security also plays a role, but is not covered in this docu-
ment.

2.1 The Importance of Secure Passwords

Passwords are the keys to your system.Having a user-
name/password combination allows an attacker to bypass all
your security and obtain direction access. Thus, using pass-
words that are strong enough to prevent casual cracking are
an effective and simple measure thatneedsto be part of the
overall security plan.

The bookPractical UNIX & Internet Security[3] has an
in-depth discussion on password selection. They recom-
mend passwords that:

• Have both uppercase and lowercase letters.

• Have digits and/or punctuation characters as well as let-
ters.

• May include some control characters and/or spaces.

Securing CVS on OpenBSD
May 10, 2001

Tillman Hodgson
Page 3of 7

• Are easy to remember, so they do not have to be written
down.

• Are seven or eight characters long.

• Can be typed quickly, so somebody cannot determine
what you type by watching over your shoulder.

OpenBSD’scrypt() function allows us to tighten pass-
word security considerably. By using Blowfish to encrypt
CVS passwords1 you can allow the use of longer passwords
(up to 72 characters) and allow characters that traditional
crypt() may have interpreted rathering than accepting at
face value. This, combined with Blowfish greater resilience
to cracking attempts, should greater increase the security of
your CVS passwd file.

† Note that you should still change all passwords
in your passwd file if you even suspect that it has
fallen into unfriendly hands. The use of good
passwords and the Blowfish encryption method
buys you more time to do this in, but doesnot
provide a guarantee that some passwords won’t
be cracked..

2.2 The Importance of Secure Users

CVS has the convienient, but possibly insecure, feature of
saving the users CVS password in˜/.cvspass in essen-
tially plain-text form2.

The implications of this are that if a users home directory
(and, by extension, their workstation in general) is not well
secured, then obtaining the pasword is fairly easy.

Tools that you can use to combat this include:

• Frequent password changes by the CVS administrator,
with the new password being transmitted to the uers
non-electronically

• Frequent backups of the CVS repository so that damage
can be repaired

• Not giving remote users the ability to modify CVS-
ROOT3

Additionally, some of the options for theadmin com-
mand are dangerous. It’s use should be restricted by creat-
ing thecvsadmin user group, which prevents regular users
from using all of theadmin options except-k , which is
needed to mark files as binary.

1That explanation is somewhat simplified. The actual passwd field en-
try is created by encrypting the string ”OrpheanBeholderScryDoubt” with
the Blowfish state 64 times.

2The password is mangled to make it harder to read, but the algorythm
is well-known and reversible.

3This is inconvienient, as the CVS administrator has to do a lot of work
on behalf of the developers, but can prevent an intruder from causing as
much damage.

2.3 SSH Tunnels

2.4 Chroot Jails

The security of a network daemon (such as CVS) can be
enhanced by using thechroot() system call.chroot()
changes the effective root directory for a process to a specific
subdirectory within the filesystem. For example, the CVS
process would see/chroot/cvs/ and it’s subdirectories
as/ and it’s subdirectories.

This greatly improves security because a very reduced
piece of the system is available to the intruder if they suc-
cessfully infiltrate the CVS daemon.

For example, the real/etc/master.passwd file
is not viewable from within the chroot ”jail”, and
instead a substitute (with only the CVS user) at
/chroot/cvs/etc/master.passwd takes its place.

Under most Unix variants if the root user is able to execute
arbitrary code (for example, ifperl is available or a method
to move new executables into the chrooted environment is
utilitzed) they will be able to break out of the chroot.4

Carefully constructing your chroot environment so that
the root account is well protected helps alleviate one of these
concerns. Unfortunately, bringing executable code (pre-
compiled static binaries, for example) into the chroot is very
easy with a CVS daemon, since one of its functions is to
hold a file repository. This requires us to emphasize even
more securing the root account.

Because the CVS daemon will not be able to access any-
thing outside of the chroot environment special measures
must be taken to ensure that any needed devices are avail-
able (i.e. that/chroot/cvs/dev exists and has appro-
priate entries)

3 Chrooting CVS

3.1 CVS User Setup

3.2 Populating the Jail

Statically compiled binaries recommended because ...

3.3 The run-cvs Wrapper

vim run-cvs.c gcc -O2 run-cvs.c -o run-cvs cp run-cvs
/usr/sbin/run-cvs

#include <stdlib.h>
#include <unistd.h>

4 /* change these #defines to suit your setup */
#define BASE "/chroot/cvs"
#define OWNER_UID 999
#define OWNER_GID 999

8

int main(int argc, char *argv[])

4For information on breaking out of a chrooted environment, see
http://www.bpfh.net/simes/computing/chroot-break.html

Securing CVS on OpenBSD
May 10, 2001

Tillman Hodgson
Page 4of 7

{
int res;

12

res = chdir (BASE);
if (res) exit (1);

16 res = chroot (BASE);
if (res) exit (2);

res = setgid(OWNER_GID);
20 if (res) exit (3);

res = setuid(OWNER_UID);
if (res) exit (4);

24

/* there should be --allow-root string per
repository you are allowing access to */

execl("/bin/cvs", "cvs",
28 "--allow-root=/TILLMAN",

"--allow-root=/LOSURS",
"--allow-root=/TOMGOULET",
"pserver",

32 NULL);
exit (3);

}

† Remember to modifyrun-cvs.c , re-compile,
and cp it over the existing copy every time that
you add a new repository or else the new reposi-
tory will not be accessible via cvs.

BlahBlahBlah ...

3.4 CVS Tools

3.5 CVS Administrative Files

3.6 Notifications

3.7 Sending Mail out of the Jail

4 SCVS: SSH Tunnel

4.1 Where to get SCVS

4.2 How to modify SCVS

The first line of thescvs file contains the full path toperl .
If your copy of perl is installed in a different location
you’ll have to modify this line to match.

† Note that you need to modify this for every client
installation. scvs is not installed on the server,
just on the clients. Thus you’ll likely end up cus-
tomizing each client installation individually un-
less you have identical clients.

The next bit ofscvs is intended to be modified by the
user, and looks like this:

#--
tunable variables
#--

4

$tune_cvs_server_name = "cvs.losurs.org";
$tune_local_cvs_cmd = "/usr/bin/cvs";
$tune_remote_cvs_port = 2401;

8 $tune_local_cvs_port = 2401;

local ssh command to use
$tune_ssh_cmd = "ssh";

12

the user on the server side cvs runs as
$tune_ssh_user = "cvs";

4.3 Disabling SCP

5 Users Manual: Basic Operations

A Resources

B scvs listing

The completescvs listing is presented here, with comments
stripped after the configuration section (excepting copyright
notice). This in provided in case the reader is unable to find
a working mirror ofscvs on the Internet.

1 2 3 4 5
12345678901234567890123456789012345678901234567890123456

#!/usr/bin/perl

modified for ssh+chroot setup by Anton Berezin <tobez@plab.ku.dk>
4

#--
tunable variables
#--

8

change this!
$tune_cvs_server_name = "loki.hodgsonhouse.com";

12 # where cvs program is located on the client system
$tune_local_cvs_cmd = "/usr/bin/cvs";

remote pserver port to use
16 # for explanation, see

http://www.prima.eu.org/tobez/cvs-howto.html#inetd
#$tune_remote_cvs_port = 2410;
$tune_remote_cvs_port = 2401;

20

local pserver port; you probably don’t want to change this
$tune_local_cvs_port = 2401;

24 # ssh command to use; the default is good for UNIX clients
$tune_ssh_cmd = "ssh";

the user on the server side cvs runs as
28 $tune_ssh_user = "cvs";

#--
end of tunable variables

32 # there is no need to modify anything below
#--

#
36 # $Id: scvs,v 1.6 1999/02/09 16:37:04 tim Exp $

#
(c) 1999, Tim Hemel <tim@n2it.net>
#

40 # SCVS - "secure cvs"
#
scvs [-d cvsroot] [cvsoptions] cvscommand [cvscommandoptions]
#

44 # This program executes a cvs client and lets it run its traffic through an
encrypted SSH tunnel.
#
The remote repository can be specified on the commandline, or in the CVSROOT

48 # environment variable. This should be done with -d cvsroot, where cvsroot is
the remote repository. For example: :pserver:cvs@cvs.n2it.net:/cvs. This
option MUST be the FIRST option to scvs if it is given.
#

52 # After having checked out a file, the CVS/Root file contains the fake tunnel
cvs server on the localhost. This saves you from using the -d option all the

Securing CVS on OpenBSD
May 10, 2001

Tillman Hodgson
Page 5of 7

time. Be careful however when using both scvs and cvs on the same directory.
Preferably all cvs traffic should be done with scvs.

56 #

TODO:
#

60 # * Implement better error detection and recovery.
* Better parsing of the repository (it will not detect strange syntaxes).
* Better command line option parsing
* Add more options that are now still environment variables. For example,

64 # -S should contain $SSH_DEFAULT_HOST. for example: -S ssh@cvs.n2it.net:22,
-S ssh@, -S :22, -S cvs.n2it.net, or -S ssh@:22.
#

68 #
Note: there is no way to specify a different port number to cvs. This means
that all scvs clients on the same machine need to share port 2041.
This is possible, only the ssh tunneling will fail, so our program should

72 # detect that and continue anyway.
A successful connection is then only possible if the other users know the
password for $SSH_USER@$SSH_HOST, or if there is no password.
#

76

###
CVS settings

80 $CVS_CMD=$tune_local_cvs_cmd;

$CVS_PORT=$tune_remote_cvs_port;
$CVS_LOCAL_PORT=$tune_local_cvs_port;

84

the values below will be needed only if the repository is specified via the
command line or the CVSROOT environment variable, and in those cases they
will be extracted from there. However, for funny results you can uncomment

88 # these two lines.
$CVS_HOST="cvs.n2it.net";
$CVS_USER="tim";

92 ###
SSH settings

ssh2 does not seem to work with our -L port:host:hostport argument, so make
96 # sure we will use ssh1.

$SSH_CMD=$tune_ssh_cmd;

This should be the user on whose behalf the tunneling is made. It is
100 # typically a user that cannot do any harm, has no password and uses a program

like nologin (but one that will wait) as a shell.
$SSH_USER=$tune_ssh_user;

104 # This value should also automagically be set from the repository name.
However, if that host is not running sshd, you may want to tunnel through
another host and modify and uncomment the line below.
$SSH_HOST=$CVS_HOST

108

This value is used if the repository cannot be determined from the
commandline or the CVSROOT variable. Modify this for your local situation.
$SSH_DEFAULT_HOST=$tune_cvs_server_name;

112

Port at which the sshd on the remote server runs. Default is 22.
$SSH_PORT=22;

116 # This should be left unmodified, as it makes no sense changing this. Unless
some future version (or perhaps even the current version) of cvs allow you
to specify the remote repository’s port.
$SSH_LOCAL_PORT=$CVS_LOCAL_PORT;

120

###
& parse_repository ({{rep}})

124 # . extracts the method, user, host, port and directory from {{rep}}.
. There are four possibilities:
- /path/to/repository
- :method:/path/to/repository

128 # - :user@hostname:/path/to/repository
- :method:user@hostname:/path/to/repository
#
. This function is far from perfect and will produce strange results with

132 # non-standard repositories. Has only been tested for :pserver: method.
#
sub parse_repository
{

136 my $rep = $_[0];

my ($dir,$user,$host,$method);

determine the directory
140 $rep =˜ s /:(\/.*)$// && do { $dir=$1; };

if (not $dir)
{ $rep =˜ s /(\/.*)$// && do {$dir = $1; }; }

144 # determine the hostname and the username
$rep =˜ s /:([ˆ:]*)@(.*)$// && do { $user = $1; $host = $2; };
if (not $host)

{ $rep =˜ s /:([ˆ:]+)$// && do { $host = $1; }; }
148

all that is left now is the method
$rep =˜ s /ˆ:([ˆ:]*)// && do { $method = $1; };

152 # if there is still anything left, we have an error, warn the user
if ($rep)

{ print STDERR "Warning: repository parsed wrong (’$rep’ ignored).\n"; }

156 #print STDERR "DEBUG: dir=$dir, user=$user, host=$host, method=$method\n";
return ($method, $user, $host, $dir);

}

160

###
main

164 # should be changed to a general cmdline parsing routine.
get the repository’s name from the commandline or the CVSROOT environment
variable.
if ($ARGV[0] eq "-d")

168 {
$rep="$ARGV[1]";
shift ; shift ;

}
172 else

{
$rep = $ENV{’CVSROOT’};

}
176

#print STDERR "DEBUG: rep = $rep\n";

parse the repository
180 ($method, $user, $host, $dir) = parse_repository $rep;

print "met: $method, user: $user, host: $host, dir: $dir\n";

construct the local fake cvs server name.
184 if ($method) { $cvs_serv = ":$method:"; }

if ($user) { $cvs_serv .= "$user\@"; }
if ($rep) { $cvs_serv .= "localhost:"; }
if ($dir) { $cvs_serv .= $dir; }

188

print STDERR "DEBUG: cvs_serv = $cvs_serv\n";

construct the tunneling command
192 $SSH_HOST |= $host;

#print STDERR "DEBUG: SSH_HOST=$SSH_HOST\n";
$SSH_HOST |= $SSH_DEFAULT_HOST;
#print STDERR "DEBUG: SSH_HOST=$SSH_HOST\n";

196

if ($SSH_USER)
{ $ssh_serv="$SSH_USER\@$SSH_HOST"; }

else
200 { $ssh_serv="$SSH_HOST"; }

print "ssh_serv: $ssh_serv\n";

204 $tunnel_cmd = "$SSH_CMD $ssh_serv -q -x -f"
. (($SSH_PORT) ? " -p $SSH_PORT" : "")
. " -L $SSH_LOCAL_PORT:$SSH_HOST:$CVS_PORTopen";

208 # print "tunnel_cmd: $tunnel_cmd\n";

execute the tunneling, and read the response from the server
open (TUNNELSH,"$tunnel_cmd |") or die "Could not execute $tunnel_cmd!";

212 chomp ($magicword = <TUNNELSH>);
#print STDERR "magicword = $magicword!\n";

Now we can call system to execute the cvs command.
216 # print STDERR "Doing: $CVS_CMD|", (($cvs_serv) ? (’-d |’, "$cvs_serv|") : ()) , "@ARGV", "|\n";

$exitcode =
system "$CVS_CMD", (($cvs_serv) ? (’-d’, $cvs_serv) : ()) , @ARGV;

Securing CVS on OpenBSD
May 10, 2001

Tillman Hodgson
Page 6 of 7

220 if ($exitcode) { print STDERR "Could not execute CVS command!\n"; }

close the tunnel
#print STDERR "DEBUG: ", ("$SSH_CMD $ssh_serv -q -x -f"

224 # . (($SSH_PORT) ? " -p $SSH_PORT" : "")
. " $magicword");
print STDERR "before close\n";
system ("$SSH_CMD $ssh_serv -q -x -f"

228 . (($SSH_PORT) ? " -p $SSH_PORT" : "")
. " $magicword");

print STDERR "right after close\n";

C Change Log

D GNU Free Documentation License

Securing CVS on OpenBSD
May 10, 2001

Tillman Hodgson
Page 7 of 7

References

[1] Anton Berezin, Chrooted tunnelled read-write CVS
server HOWTO, http://www.prima.eu.org/tobez/cvs-
howto.html

[2] Per Cederqvist et al, The Cederqvist,
http://cvs.home.org/docs/manual/cvs.html

[3] Simson Garfinkel & Gene Spafford,Practical UNIX &
Internel Security, ISBN 1-56592-148-8

